Pythonæ¡åŒµã¢ããªãã£ã¯ã¹ãAIé§åã®ããŒã¿åææè¡ããããŠããããã°ããŒãã«BIãšæææ±ºå®ãã©ãå€ããŠããããæ¢ããŸããå®çšçãªå¿çšãšã¡ãªããã
Pythonæ¡åŒµã¢ããªãã£ã¯ã¹ïŒã°ããŒãã«ã€ã³ãµã€ãã®ããã®AIæ¯æŽããŒã¿åæ
仿¥ã®ããŒã¿äž»å°åã®äžçã§ã¯ãèšå€§ãªããŒã¿ã»ããããææçŸ©ãªã€ã³ãµã€ããæœåºããèœåãæãéèŠã§ããPythonã¯ããã®è±å¯ãªã©ã€ãã©ãªãšã³ã·ã¹ãã ã«ãããããŒã¿åæã®äž»èŠèšèªãšããŠå°é ããŠããŸããããããããã®åéã¯æ¥éã«é²åããŠããŸããããã§ç»å Žããã®ãæ¡åŒµã¢ããªãã£ã¯ã¹ã§ããããã¯ã人工ç¥èœïŒAIïŒã𿩿¢°åŠç¿ïŒMLïŒã掻çšããŠããŒã¿åæããã»ã¹ãèªååã»åŒ·åããäžçäžã®äŒæ¥ãããè³¢ããããè¿ éãªæææ±ºå®ãè¡ããããã«ããå€é©çãªã¢ãããŒãã§ãããã®ããã°èšäºã§ã¯ãPythonæ¡åŒµã¢ããªãã£ã¯ã¹ã®äžçãæãäžãããã®ã¡ãªãããå®çšçãªå¿çšããããŠãã®é©åœãæšé²ããããŒã«ãæ¢ããŸãã
æ¡åŒµã¢ããªãã£ã¯ã¹ãçè§£ãã
æ¡åŒµã¢ããªãã£ã¯ã¹ã¯ãAIãšMLãçµã¿èŸŒãã§ããŒã¿æºåãåæãã€ã³ãµã€ãçæãèªååããããšã«ãããåŸæ¥ã®ããžãã¹ã€ã³ããªãžã§ã³ã¹ïŒBIïŒãè¶ ããŠããŸããããã«ãããããŒã¿ãµã€ãšã³ãã£ã¹ããšããžãã¹ãŠãŒã¶ãŒïŒæè¡çãªå°éç¥èã®æç¡ã«ãããããïŒã¯ãããŒã¿å ã®é ãããã¿ãŒã³ããã¬ã³ããç°åžžãçºèŠã§ããŸããããã¯ãããŒã¿ãåŠçããã ãã§ãªããç©æ¥µçã«ã€ã³ãµã€ããææ¡ããã¢ã¯ã·ã§ã³ãæšå¥šããéåžžã«ã€ã³ããªãžã§ã³ããªã¢ã·ã¹ã¿ã³ãããããšèããããšãã§ããŸãã
äž»ãªã³ã³ããŒãã³ãã®å èš³ã¯æ¬¡ã®ãšããã§ãã
- èªååãããããŒã¿æºåïŒ AIé§åã®ããŒã«ã¯ãããŒã¿ã¯ãªãŒãã³ã°ã倿ãçµ±åãªã©ã®ã¿ã¹ã¯ãèªååããŸããããã«ãããéå±ãªã¿ã¹ã¯ã«è²»ããæéãåæžãããããŒã¿ã®å質ãä¿èšŒãããŸãã
- èªååãããã€ã³ãµã€ãçæïŒ MLã¢ã«ãŽãªãºã ã¯ãããŒã¿å ã®ãã¿ãŒã³ãçžé¢é¢ä¿ãç°åžžãèå¥ããããã«äœ¿çšãããæååæã§ã¯èŠéãããå¯èœæ§ã®ããã€ã³ãµã€ããèªåçã«çæããŸãã
- èªç¶èšèªçæïŒNLGïŒïŒ NLGã¯ãè€éãªããŒã¿æ€åºçµæããããåºãç¯å²ã®ãŠãŒã¶ãŒãã¢ã¯ã»ã¹ã§ãããçè§£ããããç©èªåœ¢åŒã®ã¬ããŒããèŠçŽã«å€æããŸãã
- äºæž¬åæïŒ AIã¢ãã«ã¯ãå°æ¥ã®ãã¬ã³ããšçµæãäºæž¬ã§ããããã¢ã¯ãã£ããªæææ±ºå®ãå¯èœã«ããŸãã
æ¡åŒµã¢ããªãã£ã¯ã¹ã«ãããPythonã®å
Pythonã®æ±çšæ§ãšåºç¯ãªã©ã€ãã©ãªãšã³ã·ã¹ãã ã¯ãæ¡åŒµã¢ããªãã£ã¯ã¹ãœãªã¥ãŒã·ã§ã³ãå®è£ ããããã®çæ³çãªãã©ãããã©ãŒã ãšãªã£ãŠããŸãããã®ãªãŒãã³ãœãŒã¹ã®æ§è³ªãå€§èŠæš¡ãªã³ãã¥ããã£ã䜿ããããã¯ãåºãæ¡çšãããŠããçç±ã§ããæ¡åŒµã¢ããªãã£ã¯ã¹åãã®äž»èŠãªPythonã©ã€ãã©ãªã«ã¯ã次ã®ãããªãã®ããããŸãã
- PandasïŒ ããŒã¿æäœãšåæã®ããã«ã匷åãªããŒã¿æ§é ãšããŒã¿åæããŒã«ãæäŸããŸãã
- NumPyïŒ æ°å€èšç®ã®ããã«ãå€§èŠæš¡ãªå€æ¬¡å é åãšè¡åã®ãµããŒããããã³æ°åŠé¢æ°ã³ã¬ã¯ã·ã§ã³ãæäŸããŸãã
- Scikit-learnïŒ æ©æ¢°åŠç¿ã®ããã«ãåé¡ãååž°ãã¯ã©ã¹ã¿ãªã³ã°ãªã©ã®å¹ åºãã¢ã«ãŽãªãºã ãæäŸããŸãã
- Matplotlibããã³SeabornïŒ ããŒã¿å¯èŠåã®ããã«ãæ å ±ã«åºã¥ãããã£ãŒããã°ã©ãã®äœæãå¯èœã«ããŸãã
- TensorFlowããã³KerasïŒ ãã£ãŒãã©ãŒãã³ã°ã®ããã«ãè€éãªãã¥ãŒã©ã«ãããã¯ãŒã¯ã®æ§ç¯ãšãã¬ãŒãã³ã°ã®ããã®ããŒã«ãæäŸããŸãã
- NLTKããã³spaCyïŒ èªç¶èšèªåŠçïŒNLPïŒã®ããã«ãããã¹ãåæãšçè§£ãå¯èœã«ããŸãã
- PycaretïŒ æ©æ¢°åŠç¿ã¯ãŒã¯ãããŒãèªååãããªãŒãã³ãœãŒã¹ã®ããŒã³ãŒãæ©æ¢°åŠç¿ã©ã€ãã©ãªã§ãããè¿ éãªãããã¿ã€ãã³ã°ãšæå°éã®ã³ãŒãã£ã³ã°ã§ã®ã€ã³ãµã€ãçæã«åœ¹ç«ã¡ãŸãã
Pythonæ¡åŒµã¢ããªãã£ã¯ã¹ã®å®çšçãªå¿çš
Pythonã«ãã£ãŠåŒ·åãããæ¡åŒµã¢ããªãã£ã¯ã¹ã¯ãããŸããŸãªæ¥çãããžãã¹æ©èœã«ããã£ãŠå¿çšãããŠããŸãã以äžã«ããã€ãã®ã°ããŒãã«ãªäŸã瀺ããŸãã
1. éè
äžæ£æ€åºïŒ AIã¢ã«ãŽãªãºã ã¯ããã©ã³ã¶ã¯ã·ã§ã³ããŒã¿ãåæããŠããªã¢ã«ã¿ã€ã ã§äžæ£è¡çºãæ€åºããŸããScikit-learnãTensorFlowãªã©ã®Pythonã©ã€ãã©ãªã¯ããããã®ã¢ãã«ã®æ§ç¯ãšãã¬ãŒãã³ã°ã«äœ¿çšãããŸããããšãã°ãã°ããŒãã«ãªéè¡æ©é¢ã¯ãæ°çŸäžä»¶ã®åœéãã©ã³ã¶ã¯ã·ã§ã³ã§ãã¬ãŒãã³ã°ãããã¢ãã«ãå±éããŠã顧客ã®å Žæãé貚ã«é¢ä¿ãªããçããããã¿ãŒã³ãç¹å®ã§ããŸãã
ãªã¹ã¯ç®¡çïŒ åžå Žãã¬ã³ããšçµæžææšãåæããŠã財åãªã¹ã¯ãè©äŸ¡ããŸããPythonã¯ãããŸããŸãªãœãŒã¹ããã°ããŒãã«çµæžããŒã¿ãååŸããStatsmodelsãªã©ã®ã©ã€ãã©ãªã䜿çšããŠæç³»ååæææ³ãé©çšã§ããŸããããšãã°ãã°ããŒãã«ãªæè³äŒç€Ÿã¯ãçµæžææšãšå°æ¿åŠçã€ãã³ããåæããããšã«ãããæ°èåžå Žãžã®æè³ã«é¢é£ãããªã¹ã¯ãè©äŸ¡ã§ããŸãã
ã¢ã«ãŽãªãºã ååŒïŒ èªååãããååŒæŠç¥ãéçºããŸããPythonã¯ãAlpacaãQuantConnectãªã©ã®ã©ã€ãã©ãªãšãšãã«ãåžå Žåæãšäºæž¬ã¢ãã«ã«åºã¥ããŠååŒãå®è¡ããã¢ã«ãŽãªãºã ã®èšèšã«äžå¯æ¬ ã§ãã
2. å°å£²ã»Eã³ããŒã¹
ããŒãœãã©ã€ãºãããæšå¥šïŒ é¡§å®¢ã®è¡åãšè³Œå ¥ãã¿ãŒã³ãåæããŠãããŒãœãã©ã€ãºãããè£œåæšå¥šãæäŸããŸããPandasãScikit-learnãªã©ã®ã©ã€ãã©ãªã¯ã顧客ã»ã°ã¡ã³ããŒã·ã§ã³ãå®è¡ããæšå¥šãšã³ãžã³ãæ§ç¯ããããã«äœ¿çšã§ããŸããããŸããŸãªåœã®Eã³ããŒã¹ãã©ãããã©ãŒã ã¯ããããæŽ»çšããŠå£²äžãšé¡§å®¢æºè¶³åºŠãåäžãããŠããŸãã
éèŠäºæž¬ïŒ å°æ¥ã®è£œåéèŠãäºæž¬ããŠãåšåº«ç®¡çãšãµãã©ã€ãã§ãŒã³ãæé©åããŸããProphetïŒFacebookã«ãã£ãŠéçºïŒãARIMAã¢ãã«ãªã©ã®ã©ã€ãã©ãªã䜿çšããæç³»ååæã¯ãå°æ¥ã®éèŠãæ£ç¢ºã«äºæž¬ããã®ã«åœ¹ç«ã¡ã補åãæ¶è²»è ã®å¿ èŠãšããå Žæãšæéã«å©çšã§ããããã«ããŸãã
äŸ¡æ Œæé©åïŒ åçãæå€§åããããã«ã補åäŸ¡æ Œãåçã«èª¿æŽããŸããPythonã¹ã¯ãªããã¯ãç«¶åä»ç€Ÿã®äŸ¡æ Œèšå®ãéèŠã®åŒŸåæ§ããã®ä»ã®èŠå ãåæããŠãæé©ãªäŸ¡æ Œã決å®ã§ããŸããã°ããŒãã«ãªå°å£²æ¥è ã¯ãç¹å®ã®åžå Žã顧客ã»ã°ã¡ã³ãã«åãããŠè£œåã®äŸ¡æ Œèšå®ã調æŽã§ããããã«ãªããŸããã
3. ãã«ã¹ã±ã¢
å»ç蚺æïŒ å»çç»åãšæ£è ããŒã¿ãåæããŠãç æ°ã®èšºæãæ¯æŽããŸããTensorFlowãŸãã¯Kerasã䜿çšããŠæ§ç¯ããããã£ãŒãã©ãŒãã³ã°ã¢ãã«ã¯ãXç·ãMRIããã®ä»ã®å»çç»åã®ç°åžžãæ€åºã§ããŸããäžçäžã®ç é¢ã¯ã蚺æç²ŸåºŠãåäžãããããã«ãããã®ã·ã¹ãã ãå°å ¥ããŠããŸãã
åµè¬ïŒ æœåšçãªè¬å€åè£ãç¹å®ãããã®æå¹æ§ãäºæž¬ããããšã«ãããåµè¬ããã»ã¹ãå éããŸããPythonã¯ããã€ãªã€ã³ãã©ããã£ã¯ã¹ãšèšç®ååŠã§ãè€éãªçç©åŠçããŒã¿ãåæããããã«åºã䜿çšãããŠããŸãã
æ£è ã¢ãã¿ãªã³ã°ïŒ ãŠã§ã¢ã©ãã«ããã€ã¹ãé»åå¥åº·èšé²ããã®æ£è ããŒã¿ãåæããŠããªã¢ã«ã¿ã€ã ã®æ£è ã¢ãã¿ãªã³ã°ãšã¢ã©ãŒããæäŸããŸããPythonã¯ããŸããŸãªå¥åº·ããŒã¿ã¹ããªãŒã ãšçµ±åã§ãããããèšåºå»ã¯ããè¿ éãã€æ å ±ã«åºã¥ããæææ±ºå®ãè¡ãããšãã§ããŸãããããã®ãã¯ãããžãŒã¯ãé éå°ã®æ£è ã«ãã«ã¹ã±ã¢ãžã®ã¢ã¯ã»ã¹ãæäŸããé éå»çã€ãã·ã¢ããã«ãããŠç¹ã«éèŠã§ãã
4. 補é
äºç¥ä¿å šïŒ æ©åšã®æ éãçºçããåã«äºæž¬ããŸããæ©æ¢°åŠç¿ã¢ãã«ã¯ãç£æ¥æ©æ¢°ããã®ã»ã³ãµãŒããŒã¿ãåæããŠãæœåšçãªåé¡ãç¹å®ããã¡ã³ããã³ã¹ãããã¢ã¯ãã£ãã«ã¹ã±ãžã¥ãŒã«ã§ããŸããããã¯ãã°ããŒãã«ãªè£œé ãµãã©ã€ãã§ãŒã³ã«ãããŠäŸ¡å€ããããŸãã
å質管çïŒ åè³ªæ€æ»ãèªååãã補åã®æ¬ é¥ãç¹å®ããŸããPythonãšOpenCVãªã©ã®ã©ã€ãã©ãªã«ãã£ãŠåŒ·åãããã³ã³ãã¥ãŒã¿ãŒããžã§ã³æè¡ã¯ã補åã®ç»åãåæããŠæ¬ é¥ãæ€åºããè£œé æ©çãŸããåäžãããããã«äœ¿çšãããŸããããã¯ãã°ããŒãã«åããããµãã©ã€ãã§ãŒã³ã®æä»£ã«ç¹ã«éèŠã§ãã
ãµãã©ã€ãã§ãŒã³æé©åïŒ ãµãã©ã€ãã§ãŒã³ããŒã¿ãåæããŠãåšåº«ã¬ãã«ãæé©åãããªãŒãã¿ã€ã ãåæžããããžã¹ãã£ã¯ã¹ãæ¹åããŸããPythonã¹ã¯ãªããã¯ããŸããŸãªãµãã©ã€ãã§ãŒã³ããŒã¿ãœãŒã¹ãšçµ±åããæé©åææ³ãæŽ»çšããŠãåœéãããã¯ãŒã¯å šäœã®å¹çãåäžãããããšãã§ããŸãã
5. ããŒã±ãã£ã³ã°
顧客ã»ã°ã¡ã³ããŒã·ã§ã³ïŒ 人å£çµ±èšãè¡åã奜ã¿ã«åºã¥ããŠé¡§å®¢ãæç¢ºãªã°ã«ãŒãã«åå²ããŸããããã«ãããã¯ã©ã¹ã¿ãªã³ã°ãå®è¡ããããã«Scikit-learnãªã©ã®ã©ã€ãã©ãªã䜿çšããã¿ãŒã²ããããŒã±ãã£ã³ã°ãã£ã³ããŒã³ãå¯èœã«ãªããŸããäŒæ¥ã¯ããã䜿çšããŠãç¹å®ã®åœããã³/ãŸãã¯å°åã§ããŒã±ãã£ã³ã°ã¡ãã»ãŒãžãã«ã¹ã¿ãã€ãºããŸãã
ã»ã³ãã¡ã³ãåæïŒ 顧客ã®ãã£ãŒãããã¯ãšãœãŒã·ã£ã«ã¡ãã£ã¢ã®èšåãåæããŠããã©ã³ãã®ã»ã³ãã¡ã³ããçè§£ããŸããNLTKãspaCyãªã©ã®ã©ã€ãã©ãªã䜿çšããNLPææ³ã¯ã顧客æºè¶³åºŠã枬å®ããæ¹åãè¡ãããã«äœ¿çšãããŸããããã¯ã倿§ãªæåçæ åºŠãæã€è€æ°ã®åœã§äºæ¥ãå±éããã°ããŒãã«äŒæ¥ã«åœ¹ç«ã¡ãŸãã
ããŒã±ãã£ã³ã°èªååïŒ é»åã¡ãŒã«ãã£ã³ããŒã³ããœãŒã·ã£ã«ã¡ãã£ã¢æçš¿ãªã©ã®ããŒã±ãã£ã³ã°ã¿ã¹ã¯ãèªååããŸããPythonã¯ããŸããŸãªããŒã±ãã£ã³ã°ãã©ãããã©ãŒã ãšçµ±åããŠããããã®ããã»ã¹ãåçåã§ããŸããäžçäžã®äŒæ¥ã¯ãããŒã±ãã£ã³ã°èªååã䜿çšããŠå¹çãåäžãããããå¹ åºããªãŒãã£ãšã³ã¹ã«ãªãŒãããŠããŸãã
Pythonæ¡åŒµã¢ããªãã£ã¯ã¹ã®å®è£ ã®ã¡ãªãã
- æææ±ºå®ã®æ¹åïŒ ããè¿ éã§ããŒã¿ã«åºã¥ããã€ã³ãµã€ããæäŸããããæ å ±ã«åºã¥ããæŠç¥çãªæææ±ºå®ã«ã€ãªãããŸãã
- å¹çã®åäžïŒ å埩çãªã¿ã¹ã¯ãèªååããããŒã¿ãµã€ãšã³ãã£ã¹ããšã¢ããªã¹ããé«äŸ¡å€ã®ã¢ã¯ãã£ããã£ã«éäžã§ããããã«ããŸãã
- 粟床ã®åäžïŒ 人çºçãã¹ãæžãããèªååãããããŒã¿åæãéããŠããæ£ç¢ºãªçµæãæäŸããŸãã
- ã³ã¹ãåæžïŒ éçšãæé©åããç¡é§ãåæžããå¹çãåäžãããã³ã¹ãåæžã«ã€ãªãããŸãã
- ã¹ã±ãŒã©ããªãã£ã®åäžïŒ å€§èŠæš¡ã§è€éãªããŒã¿ã»ãããç°¡åã«åŠçã§ããããžãã¹ã®æé·ã«äŒŽãã¹ã±ãŒã©ããªãã£ãå¯èœã«ããŸãã
- ããŒã¿ã¢ã¯ã»ã¹ã®æ°äž»åïŒ èªååãããã€ã³ãµã€ããšå¯èŠåãéããŠãéæè¡ãŠãŒã¶ãŒãããŒã¿ã«ã¢ã¯ã»ã¹ããçè§£ã§ããããã«ããŸãã
課é¡ãšèæ ®äºé
æ¡åŒµã¢ããªãã£ã¯ã¹ã¯å€§ããªå©ç¹ãæäŸããŸãããèæ ®ãã¹ãããã€ãã®èª²é¡ããããŸãã
- ããŒã¿ã®åè³ªïŒ AIäž»å°ã®ã€ã³ãµã€ãã®ç²ŸåºŠã¯ãå ¥åããŒã¿ã®å質ã«å€§ããäŸåããŸããããŒã¿ã®æ£ç¢ºæ§ãäžè²«æ§ãå®å šæ§ã確ä¿ããããšãäžå¯æ¬ ã§ãã
- ã¢ãã«ã®ãã€ã¢ã¹ïŒ ãã¬ãŒãã³ã°ããŒã¿ã«ãã€ã¢ã¹ãããå ŽåãAIã¢ãã«ã«ããã€ã¢ã¹ããããå¯èœæ§ããããŸãããã€ã¢ã¹ã軜æžããçµæã®å ¬å¹³æ§ã確ä¿ããããã«ãæ éãªæ€èšãå¿ èŠã§ãã
- ããŒã¿ãã©ã€ãã·ãŒãšã»ãã¥ãªãã£ïŒ æ©å¯ããŒã¿ãä¿è·ããããšãäžå¯æ¬ ã§ããå ç¢ãªã»ãã¥ãªãã£å¯Ÿçãå®è£ ããããŒã¿ãã©ã€ãã·ãŒèŠå¶ïŒäŸïŒGDPRãCCPAïŒãéµå®ããŠãã ããã
- çµ±åã®è€éãïŒ AIé§åããŒã«ãæ¢åã®BIã·ã¹ãã ã«çµ±åããããšã¯å°é£ãªå ŽåããããŸããæ®µéçãªã¢ãããŒããšæ éãªèšç»ãéèŠã§ãã
- è§£éå¯èœæ§ãšèª¬æå¯èœæ§ïŒ AIã¢ãã«ãçµè«ã«è³ãæ¹æ³ãçè§£ããããšãéèŠã§ãã説æå¯èœãªAIïŒXAIïŒæè¡ã®éèŠæ§ãé«ãŸã£ãŠããŸãã
Pythonæ¡åŒµã¢ããªãã£ã¯ã¹å®è£ ã®ãã¹ããã©ã¯ãã£ã¹
- æç¢ºãªç®æšãå®çŸ©ããïŒ ãŸããæ¡åŒµã¢ããªãã£ã¯ã¹ã解決ã§ããç¹å®ã®ããžãã¹äžã®åé¡ãç¹å®ããããšããå§ããŸãã
- ããŒã¿ã®æºåç¶æ³ãè©äŸ¡ããïŒ é¢é£ããŒã¿ã®å質ãšå©çšå¯èœæ§ãè©äŸ¡ããŸãã
- é©åãªããŒã«ãéžæããïŒ ç¹å®ã®ããŒãºã«åãããPythonã©ã€ãã©ãªãšãã©ãããã©ãŒã ãéžæããŸãã
- ã¹ãã«ã®ããããŒã ãæ§ç¯ããïŒ ããŒã¿ãµã€ãšã³ã¹ãæ©æ¢°åŠç¿ãããžãã¹åæã®å°éç¥èãæã€ããŒã ãç·šæããŸãã
- å埩çãªã¢ãããŒãïŒ å°èŠæš¡ãªãããžã§ã¯ãããå§ããçµéšãç©ãã«ã€ããŠåŸã ã«ã¹ã±ãŒã«ã¢ããããŸãã
- ç£èŠãšè©äŸ¡ïŒ AIã¢ãã«ã®ããã©ãŒãã³ã¹ãç¶ç¶çã«ç£èŠããå¿ èŠã«å¿ããŠèª¿æŽããŸãã
- 説æå¯èœæ§ã«çŠç¹ãåœãŠãïŒ AIã¢ãã«ã«ãã£ãŠçæãããã€ã³ãµã€ãã®èåŸã«ããçç±ãçè§£ãã説æããããã«åªããŸãã
æ¡åŒµã¢ããªãã£ã¯ã¹ã®æªæ¥
æ¡åŒµã¢ããªãã£ã¯ã¹ã¯æ¥éã«é²åããŠãããããã€ãã®ãã¬ã³ãããã®æªæ¥ã圢äœã£ãŠããŸãã
- ããŒã³ãŒã/ããŒã³ãŒããã©ãããã©ãŒã ïŒ ãããã®ãã©ãããã©ãŒã ã¯ãã³ãŒãã£ã³ã°ã¹ãã«ã«é¢ä¿ãªããAIé§åã®åæãããå¹ åºããŠãŒã¶ãŒã«æäŸããŠããŸãã
- é«åºŠãªAIæ©èœïŒ èªç¶èšèªåŠçïŒNLPïŒããã£ãŒãã©ãŒãã³ã°ãªã©ã®åéã®éçºã«ãããã€ã³ãµã€ãã®ç²ŸåºŠãšæŽç·ŽåºŠãåäžããŠããŸãã
- èªååã®åŒ·åïŒ èªååãããæ©æ¢°åŠç¿ïŒAutoMLïŒãã©ãããã©ãŒã ã¯ãã¢ãã«æ§ç¯ããã»ã¹ãç°¡çŽ åããŠããŸãã
- ãšããžã³ã³ãã¥ãŒãã£ã³ã°ïŒ AIåŠçãããŒã¿ãœãŒã¹ïŒäŸïŒIoTããã€ã¹ïŒã«è¿ã¥ããããšã§ãããé«éã§å¹ççãªåæãå®çŸããŸãã
- 説æå¯èœæ§ãžã®çŠç¹ïŒ éææ§ãããçè§£ããããAIã¢ãã«ãžã®éèŠãé«ãŸã£ãŠããŸãã
AIæè¡ã®é²åãç¶ãã«ã€ããŠãããã«èªååãé²ã¿ãã€ã³ãµã€ããåäžããäžçäžã®äŒæ¥ãããŒã¿é§ååã®æææ±ºå®ã«å®¹æã«ã¢ã¯ã»ã¹ã§ããããã«ãªãããšãäºæ³ãããŸããPythonã¯ããã®å€é©ãæšé²ããäžã§åŒãç¶ãéèŠãªåœ¹å²ãæãããŸãã
çµè«
Pythonæ¡åŒµã¢ããªãã£ã¯ã¹ã¯ãäŒæ¥ãããŒã¿ãåæããæææ±ºå®ãè¡ãæ¹æ³ã«é©åœããããããŠããŸããAIãšæ©æ¢°åŠç¿ã®åãæŽ»çšããããšã§ããã®ã¢ãããŒãã«ãããçµç¹ã¯ããæ·±ãã€ã³ãµã€ããç²åŸããããã»ã¹ãèªååããããè¯ãææãæšé²ã§ããŸãããã¯ãããžãŒã鲿©ããããŒã¿éãå¢å ãç¶ããã«ã€ããŠãã°ããŒãã«ç«¶äºåã®ããã«Pythonæ¡åŒµã¢ããªãã£ã¯ã¹ã®æ¡çšããŸããŸãäžå¯æ¬ ã«ãªãã§ãããããã®ãã¯ãããžãŒãæ¡çšããäŒæ¥ã¯ãããŒã¿é§ååã®æªæ¥ã§æåãåããããã®è¯ãäœçœ®ã«ããã§ãããã
ããã§èª¬æããã©ã€ãã©ãªãšææ³ã䜿çšããããšã«ãããã°ããŒãã«äŒæ¥ã¯æ å ±ã«åºã¥ããæææ±ºå®ãè¡ããã°ããŒãã«åžå Žã«è¿ éã«å¯Ÿå¿ããããŒã¿ã«å¯Ÿããããè¿ éãã€åªããã€ã³ãµã€ããåŸãããšã§ç«¶äºåªäœæ§ãç²åŸã§ããŸããPythonãšAIã䜿çšã§ããèœåã«ãããäŒæ¥ã¯ããã»ã¹ãåçåããå¹çãæ¹åããè€éãªããŒã¿åæãæ¥çã«é¢ä¿ãªããããå¹ åºããªãŒãã£ãšã³ã¹ã«ã¢ã¯ã»ã¹å¯èœã«ããããšãã§ããŸãã
ããŒã¿åæåå¿è ã§ãçµéšè±å¯ãªããŒã¿ãµã€ãšã³ãã£ã¹ãã§ããPythonæ¡åŒµã¢ããªãã£ã¯ã¹ã®å¯èœæ§ãæ¢æ±ããããšã¯äŸ¡å€ã®ããåãçµã¿ã§ããäžèšã®ã©ã€ãã©ãªã詊ããŠãããã€ãã®åºæ¬çãªåæã¹ã¯ãªãããæ§ç¯ããããšããå§ããã°ãããã«AIæ¯æŽããŒã¿åæã®ã¡ãªããã享åã§ããããã«ãªããŸããPythonãšæ¡åŒµã¢ããªãã£ã¯ã¹ã®åãæŽ»çšããŠãããŒã¿ã®å¯èœæ§ãæå€§éã«åŒãåºããã°ããŒãã«åžå Žã§æåãæšé²ããŠãã ããã